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Permeability of Toroids

in Latching Ferrite Devices

This correspondence presents the results

of computations of relative permeability of

some typical toroids used in digital phase

shifters, Thegraphs enable the properties of
materials with comparatively narrow and

broad line widths to be compared, and the
effects of toroid shape to be seen. From
these results, the suitability of a material

and a toroid shape for a particular applica-
tion maybe assessed.

The components of the susceptibility

tensor ina finite [errite region maybe writ-
ten as follows: [1]

x3. = CO*[OJO+ j~~ – u~(N. – NJ ]/D,

x,. = w [CIJO+ ja~ – w,(N. – N.) ]/D,

X~v = — Xvz = jaco./D (1)

where

D = C0,2– U2 +-j20w

[
w — GJ.N. + ‘; (N. -1- NJ

1

and u.= y4rM,; q = yHo; o is the applied
frequency (Me/s); H, is the applied field

(oersteds); au= yAH/2; AH= line width;

Nz, N,, N, are the orthogonal demagnetizing

factors, and I ~ I =2.8 Mc/s/Oe. The effec-
tive resonance frequency w is given by
Kittel’s equation Q,’= [cw–Qm(N.–NJ]

[ao –~~ (N. –N.) ]. The ferrite configuration
in the latching phase shifter is shown in Fig.

1, and after a current pulse in the wire, it is
magnetized to remanence as indicated. Since
the magnetic path is closed in the z direc-
tion, the demagnetizing factor N, is as-
sumed to be zero in these computations. The

factors N., NV depend upon the toroid di-
mensions a and b, and if we make the usual

quasi-ellipsoid approximation, Nz = b/(a +b),
Nu=a/(a+b), and NZ+NY = 1. In latching

phase shifters, there is no holding current in

the wire; therefore, we assume HO= O and

CJO= O. With N,= O and coo= O, the effective
resonance frequency w,2 = u~gNJVU and the

susceptibility components reduce to

x.. = [jP + N.]/ [N.N. – U’ + jPl,
x.. = [jP + Nz]/[NzNl – U2 +jPl,

Xxu = — Xy= = j~/ [NZNU — Uz + jp ] (2)

where

~ = ~AH/2cdn and o = U/Wm.

At this point it is interesting to note that

if the toroid is made infinitely long (b>>a)

so that N= becomes zero, the precession fre-
quency o, in Kittel’s equation appears to

go to zero. This clilemma needs to be ex-
plained because if precession cannot occur
the medium is isotropic and latching dif-
ferential phase shifters are impossible, which
is manifestly untrue. The problem is re-
solved by realizing that, when the latching
current is zero, the coercive field H. of the
toroid maintains the circumferential pola-
rization of the toroid. Therefore, in (1) to be
rigorous we should substitute coo’ for OJO,

where UO’ = T(Ho+EL) =UO+W. But since

H. is typically [2] 0.5–1.o oersted, it can be
neglected in all configurations except the
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Fig. 1. Toroidal configurations in
latching applications.

infinitely long toroid magnetized to rema-

nence. That is to say, H. will be negligible

compared to practical demagnetizing fields.
For the infinitely long toroid, Kittel’s equa-
tion is

Cor’ = %(% + c%), [Oc = ?’Hcl

since N.= iVV = coo = O; and if the toroid ma-

terial is Y I G, w-l 18 C/S. Therefore, we see

that although the precession frequency be-
comes very low it does not go to zero, and,

hence, differential phase shift is possible in

infinitely long toroids. In the computations

which follow H, is neglected.
The permeability components of a finite

toroid may be computed from (2). Since the

permeability [P] =PO[l + [xl], we an sepa-
rate the real and imaginary parts of the sus-
ceptibility into x=x’ —jx” and write the
permeability components as follows:

p.. = k’ — k.”; WV = WY’ — jpgu’r;

yzy = j(K’ — jK”).

Thus, using (2) we have

NV(N.NY – .2) + p’
#..’=l+—

(NzNu – U2)2 + fJ2

—P[N,(N. – 1) – a’]
l.%” =

_. ——— ———
(N.N{ – U2)2 + p’

N.(N.NU – .2) + P2
,% ‘=1+—— ——.—— .

(NZNU – u’)’+ p’

— P[N.(NY – 1) – u’], , _ _____————
~~~ – (NZNU – ~2)2 + P2

[ ‘1v NzN — LT-.! . ____L_——

(NzN, – u’)’+ ,0’

~// ,= ____(?___ .

(N.NU – a’)’ + f+ (3)

Using these expressions, the permeability

components of some toroids have been com-

puted for four toroid thicknesses, using two
linewidth ratios, AH/2 (47rJf,). Pm ideal

square-loop characteristic has been as-
sumed so that M,= M.. A. representative of
the narrower Iinewidth polycrystalline ma-
terials, YIG was selected with 4TM, = 1780
Gs and AH= 55 Oe; hence P = AH/2 (4rrM,)
=0.015. To represent broader linewidths we
selected an MgMn ferrite with 4rrM. = 2000

Gs and AH= 400 Oe; so for this material

P = 0.100. Four toroid shapes are considered
with N. =0.95, 0.90, 0.7, 0.5. The perme-
ability components of the YIG toroids are
shown in Figs. 2–5, and those of the ferrite
toroids in Figs. 6–9.
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Fig. 2. Permeability components of YIG tmoid.
No =0.95, AJv =0,0S, N, =0, P= O.015.
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lWJ. 3. Permeability components of YIG torukl.
Art =0’.90, NJ =0.10, N, ==0, P=Uf5.
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4. Permeabdity components of YIG tomid.
N* =0.70, NV =0.30, N, =0, ,0=0.015.
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Fig. 6. Permeability components of ferrite toroid,
.Vz =0.95. NV=0.05, N, =0, P= O.1OO.
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Fig. 7. Permeability components of ferrite tomid
X4 =0.90, ,NV=O.lO, N, =0, p =0.100.
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Fig. 5. Permeability components of YIG toroid.
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Fig. 8. Permeability components of ferrite toroid,
Nz =0.70, Nu =0,30, N, =0, P=O.1OO.
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Fig. 9. Permeability components of ferrite toroid.
I\Tz =0.50, ivy =0.50, N. =0, P =0.100.

It can be seen that the resonance fre-
quency of the toroids increases as Nz and NY

app[oach values of 0.5. Also, in the longer
torolds, pVU’ exhibits a much greater dis-
persion, aud yUU” a greater loss, than does

P.=’ and k.”, and K assumes intermediate
values. It is noteworthy that in the longer
toroids there are large loss components well

below resonance even in the narrow line-

width garnets. This point is significant in
the design of latching phase shifters for

operation at U. H. F., e.g., O.5–l.O Gc/s. De-

vices for use at 5.4–6.5 Gc/s and 8.5–9.5

Gc/s using doped YIG toroids were re-
centl y reported [3 J. These materials had

values of P <0.015 and, if we assume values
of 47rMs~ 1400 Gs, these frequency ranges
correspond to 1.38 <u<I.66 and 2.17

<u< 2.42. Therefore, we see from Figs. 2–5
that these doped YI G toroids were operated
well above resonance, where the losses are

. .
neghglble and pz,’ =PUU’ = 1 and K ‘= –0.5.
These values are close to the assumptions
of p= 1, K= +0..5 made by Schlomann

[4] in his recent analysis of double-slab

latching phase shifters.

Now let us consider briefly the applica-
tion of these results to other frequency
ranges. From Figs. 2–9, it can be seen that

a phase shifter with a long toroid will be
lossless only in the region u >0.8, if P-

0.015, or in the region u>l.O if P-O.1. Using
u >1.0 as a criterion, at a frequency of 1
Gc/s we need a material with &rM,~350
Gs. Since doped garnets with 47rM. = 300
Gs, AH=55 Oe (i.e., p =0.0915) are avail-

able [5] these could be used in a 1 Gc/s
phase shifter. However, at a frequency of

500 Me/s with the same criterion, a value of
4mM, = 180 Gs with AH=35 Oe is required.
To the author’s knowledge, such a material

is not available at present, but the problem
may be avoided by using toroids fabricated
from single crystals of doped or pure YIG.
These materials have AH=O.5 Oe and
4mM~ = 1000 or 1785 Gs, so values of p

<0.0005 are possible. Then, by selecting
short toroids, 0.7> N$>0.5, they could be
operated at s00 Me/s with values of u

= 0.179 or 0.10 (below resonance). This will
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give rise to values of y..’ and p,.’ of the

order of 2–5 and KN1. If now we consider

the higher frequency ranges, for example

frequencies of the order of 35 Gc/s, we may

select long or short toroids of ferrites with

4000< 4rMs<6000 Gs for operation well

above resonance in the range 2.0<a<3.3.
Such materials [5] are NiZn-ferrite (4rrM,

=4000 Gs), Mn-ferrite (4rM, =5200 Gs)

and Fe-ferrite (4-rrJf, =6000 Gs).

Finally, we briefly discuss the application

of these results to low-power latching reso-
nance isolators, or digital amplitude modu-
lators. Thelongertoroids (N.-o.9) exhibit

a resonance at a/a~~O.25. This means that
isolators could reconstructed at frequencies

around 0.75 Gc/’s, 1.5 Gc/s, and 3 Gc/s
using materials with values of 4~ilf. of the

order of 1070, 2140, and 4280 (%, respec-

tively. However, a greater range of ma-

terials and frequencies becomes available if

we choose short toroids (Nz~O.5). In these,
resonance occurs at Q/a~w0,5, and conse-
quently, isolators at frequencies of 0.75, 1.5,

3.0, 6.0, 10.0 Gc/s can be made using ma-
terials with values of 4mM, of the order of

535, 1070,2140,4280, 7150 Gs.Once a suit-
able material is chosen for a frequency range,

a toroid could be tuned to resonance at a
selected frequency by adjusting tbe length,

and a broader baudwidth may be possible

using several toroids of different lengths.
Finally, it should be noted that the

effects of anisotropy and the unsaturated

regions of the toroid have not been taken
into account. These factors will broaden the

Iinewidth, so that in practice it will not be

possible to work a phase shifter as near to
resonance as the theory predicts. Also, it is
to be expected that the predicted values of
resonant frequencies will in practice be
modified, if the vertical walls of the toroid
are in close proximit~rand the height of the
toroid window is appreciably different from
the waveguide height. This theory will

therefore apply most closely to a structure

in which the vertical walls of the toroid are

widely spaced ancl the magnetic circuit is
completed outside the waveguide.

To summarize: The effect on the perme-
ability tensor of shape and material line-

width has been computed for four sizes of
toroid and two values of normalized line-
width. It has been shown that to avoid
losses with values of AH/2(4 rrM,)N0.015,

corresponding to the commercially available

polycrystalline garnets, short toroids (0.7

<iVV<0.5) may be used above or below
resonance, and long toroids (ATl> 0.9) only

above resonance. IVith broader Ilnewidths,
AH/2(4 ~MJ)-0.10, losses can be avoided

only by working above resonance whatever
the shape of toroid. The way in which re-

cently reported latching phase shifters agree
with these generalizations has been dis-
cussed. On the basis of these computations
suitable materials and shapes for operation
in other frequency bands have been sug-
gested. Also, materials and shapes for digi-

tal modulators, i.e., latching resonance isola-

tors, have been discussed briefly.

L.E. DAVIS

Dept. of Elec. Engrg.

Rice University

Houston, ‘l?ex.

REFERENCES

[1] K.J. Button and B. Lax, Mi.rowav8Fert’ites at~d
Fervimag?zet$cs, New York: McGraw-Hill, 1962, p.
159, equations (4)–(29) andp. 195,ecruations(4)-
(79), (Read (iVz+Nfl) for (N. -N.) in the de.
nominators.)

[2] D. R. Taftand L. R. Hodges’’Square-loop garnet
materials for digital phase-shifter applications” J,
A$pLPl&ys., vol. 36, no. 3, pt. 2, p. 1263, March
106<.-----

[3] L. R. Whickerand R. R. Jones, ’’AdigitaI latching
ferrite strip transmission line phase shifter; Taft,
et al., “Ferrite digital phase shifters; Landry and
Passaro, “A four-bit latching ferrite switch, ” aU
three papers presented at 1965 G-MTT Sympos-
ium, Clearwater, Fla.

[4] E. Schlbmann, “Theoreticala nalysisof twin slab
phase shifters in rectangular waveguides, ” Pre-
E!nted at 1965 G-MTT Symposium, Clearwater,
F la.

[5] K. J. Button and B, Lax, op. .it. [l], pp. 163 and
703–70s.

Slope Parameter and Q

of Radial Re senators

A radial resonator, Fig. 1, has proved
useful, e.g., in filter constructions of coaxial

parametric amplifiers [1]. As a band rejec-
tion filter in a coaxial line, the radial reso-
nator lies in antiresonance. Thus, it opens

up the outer conductor efficiently, and power

at this frequency band is reflected back.

For filter design purposes, it maybe useful
to know what are the slope parameter and

the Q of the resonator, In the following, a

formula for the characteristic impedance of
the equivalent uniform TEIvI short-circuited

X/4-resonator is derived, whose slope
factor is the same as that of the radial
antiresonant line. In design work, the radial
line can be replaced by this X/4-line around
the center frequency. A formula for the Q of
the resonator is also derived.

The components of a radial TEM wave

are

E.(IZ7’)=A.J,(ks)+JmJ@’)

–j@$(ki) =AJl(kr)+BN,(kr). (1)

A and B are complex quantities and k,= 2rr/h
= 27rf /c.

For a radial line short-circuited at the

edge r=R, E,(kR)=O and, hence, A=— B

No(kR)/Jo(kR). The input admittance be-
comes

where

F,(h) = JAN, - N, (kv)Jo(kJQ)

F,(k,) == J,(k?)N,(lIt) - N,(kr)J@) . (3)

In autiresonance f =fo (k= ko) is F,(ko:~) = O.

The slope parameter for the input admit-

tance is then as can be seen

Fig. 1. The radial resormtor.

d = >/10
E= E.

Fig. 2. The Zo of a uniform TEM- short-circuited transmission line whose slope parameter
= that of the radial resonator.
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