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Permeability of Toroids
in Latching Ferrite Devices

This correspondence presents the results
of computations of relative permeability of
some typical toroids used in digital phase
shifters. The graphs enable the properties of
materials with comparatively narrow and
broad line widths to be compared, and the
effects of toroid shape to be seen. From
these results, the suitability of a material
and a toroid shape for a particular applica-
tion may be assessed.

The components of the susceptibility
tensor in a finite ferrite region may be writ-
ten as follows: [1]
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and w, =~47M,; wo=vH,; w is the applied
frequency (Mc/s}; Hy is the applied field
(oersteds); aw=+vAH/2; AH=line width;
N,, N,, N, are the orthogonal demagnetizing
factors, and |y|==2.8 Mc/s/Oe. The effec-
tive resonance frequency w, is given by
Kittel's equation 2= [wy—wn{N,— Ny)]
[wo— e (N, ~ N,}]. The ferrite configuration
in the latching phase shifter is shown in Fig.
1, and after a current pulse in the wire, it is
magnetized to remanence as indicated. Since
the magnetic path is closed in the 2 direc-
tion, the demagnetizing factor N, is as-
sumed to be zero in these computations. The
factors N,, N, depend upon the toroid di-
mensions a¢ and b, and if we make the usual
quasi-ellipsoid approximation, N, =b/(a+b),
N,=a/(@a+b), and N,+N,=1. In latching
phase shifters, there is no holding current in
the wire; therefore, we assume Hy=0 and
wo=0. With N,=0 and w,=0, the effective
resonance frequency w?2=w,?N,IV, and the
susceptibility components reduce to

Xes = Lo + Nyl/[NeNy — 02 + o],
Xyy = []p + Nr]/[NxNu —a? +jp],
Kay = — Xyz :ja'/[NzNy — a? +]P] 2)
where
p = vyAH /2w, and o = w/wm.

At this point it is interesting to note that
if the toroid is made infinitely long (b>>a)
so that IV, becomes zero, the precession fre-
quency w, in Kittel’s equation appears to
go to zero. This dilemma needs to be ex-
plained because if precession cannot occur
the medium is isotropic and latching dif-
ferential phase shifters are impossible, which
is manifestly untrue. The problem is re-
solved by realizing that, when the latching
current is zero, the coercive field H, of the
toroid maintains the circumferential pola-
rization of the toroid. Therefore, in (1) to be
rigorous we should substitute wo’ for wo,
where w¢’ =v(Ho+ He) =wp+we. But since
H., is typically [2] 0.5-1.0 oersted, it can be
neglected in all configurations except the
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Fig. 1. Toroidal configurations in

latching applications.

infinitely long toroid magnetized to rema-
nence. That is to say, H, will be negligible
compared to practical demagnetizing fields.
For the infinitely long toroid, Kittel's equa-
tion is
w? = wolws + wm), [wc = vH,|

since N, =N, =wo=0; and if the toroid ma-
terial is YIG wy~118 c/s. Therefore, we see
that although the precession frequency be-
comes very low it does not go to zero, and,
hence, differential phase shift is possible in
infinitely long toroids. In the computations
which follow H. is neglected.

The permeability components of a finite
toroid may be computed from (2). Since the
permeability {u]=po[l+[x]], we can sepa-
rate the real and imaginary parts of the sus-
ceptibility into x=x'—jx’" and write the
permeability components as follows:

Hor = Max' — Jiea''s Buy = uyy’ — '
pay = J(&" — Ji’’).
Thus, using (2) we have
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Using these expressions, the permeability
components of some toroids have been com-
puted for four toroid thicknesses, using two
linewidth ratios, AH/2(4wxM,). An ideal
square-loop characteristic has been as-
sumed so that M, = M,. As representative of
the narrower linewidth polycrystalline ma-
terials, YIG was selected with 473, =1780
Gs and AH =55 Oe; hence p=AH/2(4xM,)
~0.015. To represent broader linewidths we
selected an MgMn ferrite with 4=, =2000
Gs and AH =400 Oe; so for this material
2=0.100. Four toroid shapes are considered
with N,=0.95, 0.90, 0.7, 0.5. The perme-
ability components of the YIG toroids are
shown in Figs. 2-5, and those of the ferrite
toroids in Figs. 6-9.
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Fig. 4. Permeability components of YIG toroid.
Ny =0.70, Ny =0.30, N =0, p =0.015.

l“slu?/"‘;n

o -

PERMEABILITY '

-5 |

—io L

" ” i
i gl K

PERMEABILITY "
5

Jo

o oF To ©F m/u.'m

Fig. 5. Permeability components of YIG toroid.

N, =0.50, N, =0.50, N =0, p =0.015.
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Fig. 9. Permeability components of ferrite toroid.

Ny =0.50, N, =0.50, N, =0, p=0.100.

It can be seen that the resonance fre-
quency of the toroids increases as N, and N,
approach values of 0.5. Also, in the longer
toroids, uy,’ exhibits a much greater dis-
persion, and uy,”" a greater loss, than does
e’ and ug’’, and « assumes intermediate
values. It is noteworthy that in the longer
toroids there are large loss components well
below resonance even in the narrow line-
width garnets. This point is significant in
the design of latching phase shifters for
operation at U.H.F., e.g., 0.5-1.0 G¢/s. De-
vices for use at 5.4-6.5 Gc/s and 8.5-9.5
Ge/s using doped YIG toroids were re-
cently reported [3]. These materials had
values of p<0.015 and, if we assume values
of 4wlM,~1400 Gs, these frequency ranges
correspond to 1.38<¢<1.66 and 2.17
<o<2.42. Therefore, we see from Figs. 2-5
that these doped YIG toroids were operated
well above resonance, where the losses are
negligible and p..’~py,,'~1 and &=~ —0.5.
These values are close to the assumptions
of p=1, x=40.5 made by Schlémann
[4] in his recent analysis of double-slab
latching phase shifters.

Now let us consider briefly the applica-~
tion of these results to other frequency
ranges. From Figs. 2-9, it can be seen that
a phase shifter with a long toroid will be
lossless only in the region ¢>0.8, if p~
0.015, or in the region ¢>1.0 if p~0.1. Using
¢>1.0 as a criterion, at a frequency of 1
Ge/s we need a material with 4#M,~350
Gs. Since doped garnets with 4xM,=300
Gs, AH=55 Qe (i.e., p=0.0915) are avail-
able [5] these could be used in a 1 Gc/s
phase shifter. However, at a frequency of
500 Mc/s with the same criterion, a value of
4nM; =180 Gs with AH~35 Oe is required.
To the author’s knowledge, such a material
is not available at present, but the problem
may be avoided by using toroids fabricated
from single crystals of doped or pure YIG.
These materials have AH~0.5 Oe and
4nM,=1000 or 1785 Gs, so values of p
<0.0005 are possible, Then, by selecting
short toroids, 0.7>N,>0.5, they could be
operated at 500 Mc/s with values of «
=0.179 or 0.10 (below resonance). This will
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give rise to values of m..' and u,,’ of the
order of 2-5 and xk~1. If now we consider
the higher frequency ranges, for example
frequencies of the order of 35 Ge/s, we may
select long or short toroids of ferrites with
4000 <47M, <6000 Gs for operation well
above resonance in the range 2.0 <¢ <3.3.
Such materials [5] are NiZn-ferrite (47,
=4000 Gs), Mn-ferrite (4=x2;=5200 Gs)
and Fe-ferrite (47M;=6000 Gs).

Finally, we briefly discuss the application
of these results to low-power latching reso-
nance isolators, or digital amplitude modu-
lators. The longer toroids (N,~0.9) exhibit
a resonance at w/w,~0.25. This means that
isolators could be constructed at frequencies
around 0.75 Ge/s, 1.5 Ge/s, and 3 Ge/s
using materials with values of 47 2{, of the
order of 1070, 2140, and 4280 Gs, respec-
tively. However, a greater range of ma-
terials and frequencies becomes available if
we choose short toroids (N,~0.5). In these,
resonance occurs at o/w,~0.5, and conse-
quently, isolators at frequencies of 0.75, 1.5,
3.0, 6.0, 10.0 Gc¢/s can be made using ma-
terials with values of 4714, of the order of
535, 1070, 2140, 4280, 7150 Gs. Once a suit-
able material is chosen for a frequency range,
a toroid could be tuned to resonance at a
selected frequency by adjusting the length,
and a broader bandwidth may be possible
using several toroids of different lengths.

Finally, it should be noted that the
effects of anisotropy and the unsaturated
regions of the toroid have not been taken
into account. These factors will broaden the
linewidth, so that in practice it will not be
possible to work a phase shifter as near to
resonance as the theory predicts. Also, it is
to be expected that the predicted values of
resonant frequencies will in practice be
modified, if the vertical walls of the toroid
are in close proximity and the height of the
toroid window is appreciably different from
the waveguide height. This theory will
therefore apply most closely to a structure
in which the vertical walls of the toroid are
widely spaced and the magnetic circuit is
completed outside the waveguide.

To summarize: The effect on the perme-
ability tensor of shape and material line-
width has been computed for four sizes of
toroid and two values of normalized line-
width. It has been shown that to avoid
losses with values of AH/2(4nM:)~0.015,
corresponding to the commercially available
polycrystalline garnets, short toroids (0.7
< N,<0.5) may be used above or below
resonance, and long toroids (IV,>0.9) only
above resonance. With broader linewidths,
AH /247 M,)~0.10, losses can be avoided
only by working above resonance whatever
the shape of toroid. The way in which re-
cently reported latching phase shifters agree
with these generalizations has been dis-
cussed. On the basis of these computations
suitable materials and shapes for operation
in other frequency bands have been sug-
gested. Also, materials and shapes for digi-
tal modulators, i.e., latching resonance isola-
tors, have been discussed briefly.
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Slope Parameter and Q
of Radial Resonators

A radial resonator, Fig. 1, has proved
useful, e.g., in filter constructions of coaxial
parametric amplifiers [1]. As a band rejec-
tion filter in a coaxial line, the radial reso-
nator lies in antiresonance. Thus, it opens
up the outer conductor efficiently, and power
at this frequency band is reflected back.
For filter design purposes, it may be useful
to know what are the slope parameter and
the Q of the resonator. In the following, a
formula for the characteristic impedance of
the equivalent uniform TEM short-circuited
A/4-resonator is derived, whose slope
factor is the same as that of the radial
antiresonant line. In design work, the radial
line can be replaced by this \/4-line around
the center frequency. A formula for the Q of
the resonator is also derived.
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The components of a radial TEM wave
are

Eg(ki’) = A]o(k)) + BNo(k?’)
— jyH (k) = ATi(kr) + BN1Er). (1)
4 and B are complex quantities and k=2x/x

=2rf/c.

For a radial line short-circuited at the
edge r=R, E,(kR)=0 and, hence, 4=—B
No(kR)/Jo(ER). The input admittance be-
comes

2arH ¢ (kr)

d-Ey(kr)
i ke B

=Ty meny @

V() =

where
F[)(k}') = jo(kl)No(kR) — N (ki’)]o(kl?)
Pi(kr) = T1(kr)No(RR) — Ny(kr)Jo(RR). (3)
In antiresonance f= fo (k=4ko) is F1(kor) =0.

The slope parameter for the input admit-
tance is then as can be seen

wr _L 4

Fig. 1.

The radial resonator.
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